Physics Colloquium

3:30–4:30 pm Maria Goeppert-Mayer Lecture Hall
Kersten Physics Teaching Center
Room 106
5720 S. Ellis Avenue

Next Generation Nuclear Experiments: Toward 3D Imaging of Nuclei

Kawtar Hafidi, Argonne National Laboratory

Abstract:

Inclusive deep inelastic scattering experiments have been instrumental in advancing our understanding of the Quantum Chromodynamics (QCD) structure of nuclei and the effect of nuclear matter on the structure of bound hadrons. A great example is the observation by the European Muon Collaboration (EMC) of a deviation of the deep inelastic structure function of a nucleus from the sum of the structure functions of the free nucleons, the so-called EMC effect. On the theory side, despite decades of theoretical efforts with increased sophistication, a unifying physical picture of the origin of the EMC effect is still a matter of intense debate. To reach the next level of our understanding of nuclear QCD and unravel the partonic structure of nuclei, experiments need to go beyond the inclusive measurements and focus on exclusive and semi-inclusive reactions. In this talk, results of the first exclusive measurement of deeply virtual Compton scattering off He-4 will be presented. Future measurements at Jefferson Lab 12 GeV using a new Low Energy Recoil Tracker will be discussed. We will conclude by introducing the importance of an Electron Ion Collider with high polarized luminosity and variable energy with comprehensive recoil detection in probing the gluonic and sea quark landscape of nuclei.

Event Type

Colloquia and Lectures

May 2